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Abstract

Computations of steady streak linear stability in an adverse
pressure gradient near a leading edge are presented. Streaks
forced by free-stream normal or streamwise vorticity show dif-
ferent linear stability characteristics near the leading edge. With
sufficient streamwise distance, the characteristics are similar.
The results have implications for interpreting bypass transition.

Introduction

The simulations of Nagarajan et al. [6] involving FST interact-
ing with the leading edge revealed multiple transition scenarios.
Increasing free-stream turbulence levels and a blunter leading
edge changed the transition process from sinuous streak sec-
ondary instability, to wave-packet growth in high-speed streak
regions. The wave-packets were traced back to normal vorticity
wrapping around the leading edge. Tollmien-Schlichting waves
(TS) were ruled out of the transition scenario due to the high fre-
quencies and phase speeds. Goldstein and Sescu [4] have shown
that unsteady streaks in a Blasius layer, created by normal vor-
ticity, can remain inflectional in the high-speed region and sup-
port inviscid wave-packet growth. Goldstein [1] has suggested
there are two classes of streaks which are generated from the
free-stream: streamwise vorticity streaks (ωx) [2, 9] that are in-
sensitive to the leading edge; normal vorticity streaks (ωy) [3]
that are sensitive to the leading edge.

Here, the simpler case of steady streaks forced from either
streamwise or normal vorticity, and their influence on TS linear
stability studied. Streak secondary instability is not considered.

Geometry and Computational Methods

Laminar Base-flow

Streak base-flows are calculated with ANSYS Fluent. The
steady, pressure-based, coupled solver is used with 3rd order
MUSCL for momentum terms and PRESTO for pressure. Pook
[7] verifies accuracy using a Blasius boundary layer.

Two-dimensional Base-Flow

The Base-flow models a wind-tunnel consisting of a two-
dimensional, 5:1 contraction and a flat plate mounted away from
the tunnel centreline. This is the same configuration described
by [8], except for a blunt leading edge defined by,

(x/a)6 +(y/h)2 = 1, (1)

where a is the leading edge length and h is the half-width.
The aspect ratio (a/h) is 9, spanwise (z) width is 0.583a, and
Reynolds number based on a is 22,200. A wind tunnel con-
figuration is used to capture potential issues that would affect
experimental reproduction of results. Approximately 110 cells
are used through the boundary layer, 1000 cells in the stream-
wise direction to x= 5a, and 120 cells across the span. The total
test-section mesh size is approximately 60 million.

Flow attachment on the leading edge centreline produces an ad-
verse pressure gradient (see figure 1a) until x≈ 13a. This is due

to a small mismatch of roof geometry and layer growth. The
maximum shape factor of H = 2.98, is comparable to [6]. Fig-
ure 1(c), the neutral stability calculated with Orr-Sommerfeld
equations, indicates TS growth near the leading edge. The
boundary layer is unstable to extremely high frequencies,

F = ωνU−2×106, (2)

where ω is the circular frequency, ν is the kinematic viscosity,
and U is the free-stream velocity. Forcing attachment on the
leading edge topside (slot mass-flow of 0.21, see [8]) removes
the pressure gradient and the neutral stability is close to that of
a Blasius layer. Centreline attachment is used in this paper.
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Figure 1: Two-dimensional base-flow. Black: centreline attach-
ment. Grey: topside attachment. (a) Pressure coefficient (Cp)
(b) Displacement thickness (δ∗), momentum thickness (θ), and
shape-factor (H). (c) Neutral stability envelope.

Steady Streak Boundary Conditions

A sinusoidal spanwise disturbance of the free-stream velocity is
used to create the streaks. The disturbance is defined by,

∆U =−A f ×U cos
(

2π

0.583a
z
)
, (3)

where A f sets the disturbance amplitude. Normal vorticity
streaks are created by introducing the disturbance at the inlet
of the test-section mesh, 4.8a upstream of the leading edge.
For streamwise vorticity streaks, the disturbance is introduced
upstream of the contraction, 62.5a upstream of the leading
edge. Passage of the disturbance through the contraction cre-
ates streamwise vorticity [8]. Table 1 lists the disturbance am-
plitudes used.



Normal Vorticity Streamwise Vorticity
Name A f Name A f

N2 0.02 S5 0.05
N5 0.05 S10 0.10
N10 0.10 S20 0.20
N15 0.15 S30 0.30

Table 1: Parameters of the sinusoidal free-stream disturbance.

Figure 2 shows the wake vorticity on a line 1.84a upstream of
the leading edge, and the resultant streak amplitude. The streak
amplitude is defined by,

A(x) =
(

max
y,z

(U−U2d)−min
y,z

(U−U2d)

)
/2Ue, (4)

where U2d is the two-dimensional base-flow velocity profile.
The highest amplitude disturbances show distortion. Stream-
wise vorticity creates stronger streaks, even with the blunt lead-
ing edge.
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Figure 2: (a) Wake 1.84a upstream of the leading edge. (b)
Streak amplitude. Black: normal vorticity. Grey: streamwise
vorticity.

BiGlobal Linear Stability

Streak linear stability is computed with BiGlobal stability equa-
tions using Fourier decomposition in the spanwise direction.
The base-flow, U = (U,V,W )T, is decomposed as,

U =
N

∑
k=−N

Ûexp(ikβz) (5)

where β is the spanwise wavenumber. Assuming parallel flow
in the streamwise direction (x) allows the definition of a distur-
bance, q(x,y,z, t) = (u,v,w, p)T as,

q =
N

∑
k=−N

q̂exp(iαx+ i(k+ ε)βz− iωt) , (6)

where α is the complex streamwise wavenumber, ω is the real
angular frequency, and ε is the Floquet parameter. The spatial
eigenvalue problem is formulated for a given wavenumber (k)
as,

+∞

∑
j=−∞

Lk− j
1 q̂ j +Lk− j

2 q̂ j
y +Ck− jq̂ j

yy

=−iαDk− jq̂ j +α
2Ck− jq̂ j, (7)

where subscript y is the wall-normal derivative. The matri-
ces L1, L2, C and D can be found in [7]. Only the U and W
component of the base-flow are used. The polynomial eigen-
value problem is made linear with the substitution used by [5]
for the OS equation. Equation (7) is solved with the Arnoldi
method via the Matlab eigs function calling ARPACK. The
wall-normal (y) direction is differenced with Chebyshev poly-
nomials on Np Chebyshev–Gauss–Lobatto collocation points,
mapped algebraically to the physical domain [0 . . .ymax] with
half the points placed below yc. The boundary conditions are,

y(0) : u,v,w = 0, y(ymax) : u,v,w = 0. (8)

The base-flow is linearly interpolated onto the BiGlobal grid.
Assessment of grid resolution is shown in Table 2 using the N10
streak at x = 2a, computing the most unstable eigenvalue for
ω = 1750 rads−1 and ε = 0. Using Np = 80, k = [−20 . . .20],
yc = 2δ99, and ymax = 10δ99 (δ99 is the two-dimensional layer
99% thickness) changes the eigenvalue by 0.11% relative to a
solution with Np and ymax doubled. Increasing k beyond 20 has
no substantial effect, and the resolution Np = 80, yc = 2δ99,
ymax = 10δ99, k = 20, is used in subsequent calculations. Base-
flow resolution is assessed by halving the Fluent CV in each
direction. Table 2 shows the eigenvalue changes by 1.2%. The
full base-flow mesh resolution is used for all calculations and is
considered accurate enough to determine qualitative behaviour.

Np yc ymax k αrδ∗ −αiδ
∗ ∆ |α|

(δ99) (δ99) ×10−1 ×10−3 %
‡160 4 20 20 2.801 2.453 0.00
80 2 5 20 2.800 2.430 0.97
80 2 10 5 2.795 1.955 20.3
80 2 10 15 2.801 2.456 -0.13

†80 2 10 20 2.801 2.456 -0.11
80 2 10 25 2.801 2.456 -0.11
∗80 2 10 20 2.801 2.424 1.20

Table 2: Resolution affect on eigenvalue accuracy. † resolu-
tion used in subsequent calculations. ‡ reference eigenvalue for
∆ |α|%. ∗ calculated from halving Fluent base-flow CV.

Linear Stability Results

On the Leading Edge (x = 0.5a)

Streak base-flows contours at x = 0.5a, scaled by the local edge
velocity of two-dimensional layer (Ue), are shown in figure 3.
The cross-flow velocity of the normal vorticity streaks is re-
versed near the wall across the entire streak span. Only the S20
and S30 streamwise vorticity streaks exhibit a limited region of
reversed cross-flow near the streak centreline.

The eigenvalue spectrum for even and odd modes (ε = 0) are
shown in figure 4, and the envelope of the most unstable modes
in figure 5(a). Each frequency has a discrete branch of eigen-
values, similar to a two-dimensional layer with disturbances of
differing spanwise numbers, i.e. oblique waves. Even and odd
eigenvalues have similar values for smaller streak amplitudes,
with the most unstable mode even except for S30.

Increasing streak amplitude for normal vorticity streaks sup-
press low frequencies, except N2 and N5 which slightly desta-
bilise higher frequencies. The most unstable frequency shifts
from F = 1100 for two-dimensional flow, to F u 1400 for N15,
but the growth rate is reduced. The phase velocity defined as,

cr = ωα
−1
r , (9)

of the most unstable mode is also increased relative to the two-
dimensional TS, up to 0.55Ue (see figure 5(b)).
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Figure 3: Base-flow contours (20 levels, grey is negative) at x =
0.5a, Reδ∗ = 240. z < 0 is left-side of normal vorticity streak.
z > 0 is right-side of streamwise vorticity streak. Bracketed
values are min/max. U/Ue: (a) N2, S5 (b) N5, S10 (c) N10,
S20 (d) N15, S30. W/Ue: (e) N2, S5 ( f ) N5, S10 (g) N10, S20
(h) N15, S30.

Streamwise vorticity streaks destabilise lower frequencies (F <
1200) with increasing amplitudes. The maximum growth rates
exceed that of two-dimensional TS. For S30, the most unstable
frequency is F u 800. However, the phase velocity is barely
altered. No streak secondary instability modes, based on an
expected c u 0.8Ue, are found.
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Figure 4: Eigenvalues at x = 0.5a. Even modes: +,×,∗. Odd
modes: �,O. Colours group the same frequency from F =245
to 1800 (19 frequencies). (a) N2 (b) N10 (c) S2 (d) S20.

Figure 6 shows sample eigenvectors for modes labelled A to H
in figure 4. For lower frequencies, the most unstable even and
odd modes of the normal vorticity streaks (A and B) have their
urms concentrated near the low-speed region of the streak. The
modes C, D are even with the same frequency. The mode C
urms is concentrated near the high-speed region of the streak.
The wrms maximum is larger than urms, located further away
from the low-speed streak region, and lower in the layer. Char-
acteristics in common with the wave-packets of [6].

Modes E and F, G and H for the streamwise vorticity streaks
have the same disturbance frequency. Mode E is characteris-
tic of modes promoted at low frequencies, with urms concen-
trated in the low-speed streak region, while F with urms in the
high-speed region is suppressed. At high frequencies, the maxi-
mum urms moves towards the high-speed region (see G) but the
growth is slightly reduced relative to two-dimensional TS.

The spanwise periodic streak base-flows are decomposed with
a Fast Fourier Transform (FFT) to explore a simplified model
of streak stability. Figure 7(a) shows the two-dimensional base-
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Figure 5: (a) Unstable eigenvalue envelope at x = 0.5a. (b)
Phase velocity of the most unstable eigenvalue. Dotted red line
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flow velocity profile with the inflection point marked. The in-
flection point could be expected to dominate the stability char-
acteristics. Streaks would alter the stability by shifting the in-
flection point. Also shown is the zeroth mode deviation (Ûd),

Ûd = Ûk0−U2d , (10)

where Ûk0 is the zeroth mode (mean) of the base-flow spanwise
Fourier decomposition. Figure 7(b) shows the Ûd profile of the
streamwise vorticity streaks is “s” shaped. The normal vortic-
ity streak Ûd show an excess through the entire layer with the
maximum above the inflection point.

The streak base-flow modes Ûk±1, Ûk±2 are shown in fig-
ure 7(c− d). For all streaks, the maximum of Ûk±1 is located
above inflection point. The Ûk±1 maximum is located slightly
higher for the normal vorticity streaks.

Stability calculations in Figure 8(a) using only Ûk0, shows
this component for the normal vorticity streaks suppresses low-
frequency modes and destabilises the higher frequencies. Qual-
itatively the same as the BiGlobal calculations using all base-
flow Fourier modes. Including Ûk±1, figure 8(b), increases the
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growth rate of the high frequencies but the qualitative trend is
the same.
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Figure 8 shows modification of Ûk0 by the streamwise vorticity
streaks stabilises all frequencies, unlike the previous BiGlobal
calculations. Including Ûk±1 destabilises low frequencies in
qualitative agreement with the BiGlobal calculations.

It can be inferred from figure 7(b) and (c), that the maximum
amplitude of Ûd relative to Ûk±1 for the normal vorticity streaks
increases with streak amplitude, while for the streamwise vor-
ticity streaks it is near constant. Hence, mean flow modification
due to the normal vorticity streaks dominates the stability char-
acteristics at this streamwise position while it has a minimal af-
fect for the streamwise vorticity streaks which are dominated by
Ûk±1. The mean flow modification Ûd is generally stabilising,
while Ûk±1 is destabilising.

Downstream of the Leading Edge (x = 5a)
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Figure 9: Base-flow contours (20 levels, grey is negative) at
x = 5a, Reδ∗ = 616. z < 0 is left-side of normal vorticity streak.
z > 0 is right-side of streamwise vorticity streak. (a) N2, S5 (b)
N15, S30. W/Ue: (c) N2, S5 (d) N15, S30.

Figure 9 shows that, except for the freestream, the streak base
flows are visually similar at x = 5a. Only the weakest streaks,
N2 and S5, still have unstable eigenvalues with TS speeds (see
figure 10(a) and (b)). Streak secondary instabilities are present
for higher streak amplitudes but not discussed. Inferring from
figure 10(c-e), the ratio of Ûd to Ûk±1 is now similar for both
streak types, and the relatively stronger Ûd is now sufficient to
suppress TS disturbances.
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Figure 10: Stability and Base-flow FFT modes at x = 5a: (a)
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Conclusion

BiGlobal stability calculations have shown free-stream forced,
normal and streamwise vorticity streaks have different linear
stability characteristics in the early boundary layer. This is at-
tributed to the differing affect on the mean flow, and relative
amplitude of the mean flow modification to the first Fourier
mode. The unstable high frequency modes of the normal vor-
ticity streaks share similar characteristics with the wave-packets
of [6]. Downstream, the qualitative differences diminish.
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